

This presentation is from the 2008 Integrated EA Conference

The 2009 event will be held Feb 24-25

see www.integrated-ea.com

Integrated Enterprise Architecture Conference

6 -7 February, 2008

A Case Study in Using SysML for Model Driven Enterprise Architectures

Ron Williamson, Ph.D. Engineering Fellow Ron_C_Williamson@raytheon.com

Raytheon Company

Network Centric Systems California Engineering

Acknowledgements

Ian Bailey – Model Futures Ltd., M3 Example Sandy Friedenthal – LMCO, SysML Feedback Andrius Strazdauskas – No Magic, MagicDraw support

Abstract

- The need for model driven approaches to address the challenges in Enterprise and System of Systems Architectures is addressed in this case study of SysML and MODAF.
- Alternative viewpoints are illustrated for representing Enterprise Architectures using SysML.
- Several SysML features including Block, FlowPort, Item flow, Allocation, Parametrics and Requirements are mapped to the MODAF meta-model and illustrated via examples derived from MODAF documentation.
- The benefits of using a SysML for Enterprise Architecture modeling are explored.
- The case study compares and contrasts SysML features with other domain specific languages tailored for Enterprise Modeling.

Agenda

- Introduction
- Background
 - Zachman and TOGAF
 - MoDAF
 - SysML
- Case Study Perspectives
 - Contextual, Structural, Behavioral, and Parametrics
- SysML Model Summary
 - Enterprise Models from Each Perspective
- Conclusions

Introduction

- A Few Assumptions From A System Engineering Perspective
 - Consider an Enterprise as a System
 - System Engineering Best Practices apply to Enterprise Analysis and Architecting
 - The Operational/Logical Architecture Focus on the "What"
 - The Solution/Physical Architecture
 Focus on the "How"
 - System Architecture and subsequent design specifies the Hardware and Software

Focus on the instantiation of the "What" and "How"

- Model Based System Engineering balances Abstraction and Rigor
 - Use IEEE 1471 Viewpoint and View Model to manage these perspectives

Background – Zachman Framework

Interrogatives

Who, What, When, Where, Why and How

Perspectives

- Scope (Contextual), Business Model (Conceptual), System Model (Logical), Technology Model (Physical), Detailed Representation ("Out of Context" Physical Instantiation), Functioning Enterprise
- Consistent with the IEEE 1471 based SysML Viewpoint/View model

Stakeholders

- Planner → Contextual
- Owner → Conceptual
- Designer → Logical
- Builder → Physical
- Sub Contractor → Physical Instantiation

Raytheon Network Centric Systems

Background – MoDAF

Source: www.modaf.com

- Enhances and Clarifies DoDAF 1.x
 - <u>Strategic</u> Capability Perspective
 - Ability to Deliver an Effect
 Capabilities and Processes
 - <u>Logical</u> / Operational Perspective
 - Mission or Business Scenarios
 Nodes and Operational Activities
 - Resource <u>Solution</u> Perspective
 - Structure and Behavior
 Organizational Resources,
 Systems and System
 Functions
 - Acquisition Perspective
 - Time Phased

Projects, Milestones and Capability Increments

Raytheon

Network Centric Systems

Background - SysML

3. Requirements

Source: INCOSE, OMG (OMG SysML™ Tutorial

4. Parametrics

Background SysML as an Enterprise Modeling Language

SysML/MODAF Case Study Perspectives

RaytheonNetwork Centric Systems

- Strategic Context
 - Model Elements: Vision, Goals, Capabilities, Stakeholders, Viewpoint, Views
- Structural
 - Model Elements: Nodes, Organizations, Systems, Components, Interfaces
- Behavioral
 - Model Elements: Scenarios, Processes, Activities, Functions, Tasks, States, Flows
- Parametric
 - Model Elements: Constraints
 - Model Elements: Properties (effectiveness measures, metrics, quality attributes)
- Programmatic
 - Model Elements: Program, Milestones, Phases, Increments, Deliverables

Note:

The OMG UPDM (UML Profile for DoDAF/MODAF) status will be presented later in these sessions.

This briefing provides rationale for the simplified core model of the Compliance Level 1 in the UPDM Specification

SysML/MODAF Case Study **Enterprise Contextual Model**

SysML/MODAF Case Study Enterprise Structural Models

RaytheonNetwork Centric Systems

SysML/MODAF Case Study Enterprise Behavioral Model

RaytheonNetwork Centric Systems

Source: OMG UPDM FTF Specification Section 10

SysML/MODAF Case Study Enterprise Parametric Model

RaytheonNetwork Centric Systems

Technical Performance

Net Enabled

Solution

Vehicle1.UnitCost

uc:

:UnitCostEquation

NON-ITAR

SysML/MODAF Case Study Conclusions

- Enterprise Architecture Concepts Mapped Effectively to SysML language constructs
 - Capability, Node, System → SysML Block
 - OperationalActivity, SystemFunction → SysML Activities
 - Operational and System States → SysML States
 - Objective, Goal, Policy, Doctrine → SysML Requirement
 - Measures of Effectiveness and Performance → SysML Parametrics
- Enterprise Context based on SysML Viewpoint/View model
 - IEEE 1471 interpretation used for Enterprise Context
 - Extended SysML model with the OMG Business Motivation Metamodel
- Contractual Requirements Modeled
 - SysML Requirements framework used to map Enterprise Capabilities and Solutions to Contractual Specifications
- Enterprise Phase and Project Sequencing Visualization was SysML Tool limited
 - Exported model to visualization and project management tools

